Linking System-Wide Impacts of RNA Polymerase Mutations to the Fitness Cost of Rifampin Resistance in Pseudomonas aeruginosa
نویسندگان
چکیده
UNLABELLED Fitness costs play a key role in the evolutionary dynamics of antibiotic resistance in bacteria by generating selection against resistance in the absence of antibiotics. Although the genetic basis of antibiotic resistance is well understood, the precise molecular mechanisms linking the genetic basis of resistance to its fitness cost remain poorly characterized. Here, we examine how the system-wide impacts of mutations in the RNA polymerase (RNAP) gene rpoB shape the fitness cost of rifampin resistance in Pseudomonas aeruginosa. Rifampin resistance mutations reduce transcriptional efficiency, and this explains 76% of the variation in fitness among rpoB mutants. The pleiotropic consequence of rpoB mutations is that mutants show altered relative transcript levels of essential genes. We find no evidence that global transcriptional responses have an impact on the fitness cost of rifampin resistance as revealed by transcriptome sequencing (RNA-Seq). Global changes in the transcriptional profiles of rpoB mutants compared to the transcriptional profile of the rifampin-sensitive ancestral strain are subtle, demonstrating that the transcriptional regulatory network of P. aeruginosa is robust to the decreased transcriptional efficiency associated with rpoB mutations. On a smaller scale, we find that rifampin resistance mutations increase the expression of RNAP due to decreased termination at an attenuator upstream from rpoB, and we argue that this helps to minimize the cost of rifampin resistance by buffering against reduced RNAP activity. In summary, our study shows that it is possible to dissect the molecular mechanisms underpinning variation in the cost of rifampin resistance and highlights the importance of genome-wide buffering of relative transcript levels in providing robustness against resistance mutations. IMPORTANCE Antibiotic resistance mutations carry fitness costs. Relative to the characteristics of their antibiotic-sensitive ancestors, resistant mutants show reduced growth rates and competitive abilities. Fitness cost plays an important role in the evolution of antibiotic resistance in the absence of antibiotics; however, the molecular mechanisms underlying these fitness costs is not well understood. We applied a systems-level approach to dissect the molecular underpinnings of the fitness costs associated with rifampin resistance in P. aeruginosa and showed that most of the variation in fitness cost can be explained by the direct effect of resistance mutations on the enzymatic activity of the mutated gene. Pleiotropic changes in transcriptional profiles are subtle at a genome-wide scale, suggesting that the gene regulatory network of P. aeruginosa is robust in the face of the direct effects of resistance mutations.
منابع مشابه
The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa.
Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increa...
متن کاملThe Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa
Understanding how beneficial mutations affect fitness is crucial to our understanding of adaptation by natural selection. Here, using adaptation to the antibiotic rifampicin in the opportunistic pathogen Pseudomonas aeruginosa as a model system, we investigate the underlying distribution of fitness effects of beneficial mutations on which natural selection acts. Consistent with theory, the effe...
متن کاملThe fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase.
Bacterial resistance to antibiotics usually incurs a fitness cost in the absence of selecting drugs, and this cost of resistance plays a key role in the spread of antibiotic resistance in pathogen populations. Costs of resistance have been shown to vary with environmental conditions, but the causes of this variability remain obscure. In this article, we show that the average cost of rifampicin ...
متن کاملRole of PA3574 (nalD) gene in development of ciprofloxacin resistance in Pseudomonas aeruginosa isolates
Background & Aims: Pseudomonas aeruginosa is a gram-negative opportunistic pathogen and one of the mortality causes of nosocomial infections. One of the drug resistance mechanisms in P.aeruginosa is mutation in negative regulator genes of mexAB-oprM efflux pump system such as nalD. The aim of this study was to investigate the role of nalD mutations in P. aeruginosa isolates of Guilan province i...
متن کاملنقش ژن mexZ در مقاومت به سیپروفلوکساسین در جدایه های سودوموناس آئروژینوزا در استان گیلان
Messadi AA, Lamia T, Kamel B, Salima O, Monia M, Saida BR. Association between antibiotic use and changes in susceptibility patterns of Pseudomonas aeruginosa in an intensive care burn unit: a 5-year study, 2000-2004. Burns :J Int Soc Burn Injuries 2008;34(8):1098-102. Sherertz RJ, Sarubbi FA. A three-year study of nosocomial infections associated with Pseudomonas aeruginosa. J Clin Micr...
متن کامل